سیمافایل

دانلود مقاله ، پروزه ، پایان نامه ، کارآموزی، تحقیق

سیمافایل

دانلود مقاله ، پروزه ، پایان نامه ، کارآموزی، تحقیق

گزارش کارآموزی اصول ساخت مخازن تحت فشار

گزارش کارآموزی اصول ساخت مخازن تحت فشار

گزارش کارآموزی اصول ساخت مخازن تحت فشار

اصول ساخت مخازن تحت فشار

 

تعاریف اولیه :

مخزن تحت فشار : بطور کلی هر مخزنی که اختلاف فشار داخلی و خارجی آن برابر و یا بیشتر از 15 psi ( و کمتر از 3000 psi  ) بوده , قطر داخلی آن از 6 in بیشتر و دارای حجم 120 گالن باشد یک مخزن تحت فشار نامیده می شود و شامل مقررات مندرج در ASME SEC. VIII DIV.1 میگردد ( جهت کسب اطلاعات بیشتر به پاراگراف U-1 مراجعه شود ) .

در عین حال یادآور می شود که توجه به شرایط عملکردی و محیطی مخزن ( اعم از قرار گرفتن در سرویسهای خطرساز و یا آتش گیر ) میتواند در نحوه طراحی، ساخت ، آزمایشات و نهایتا کیفیت کاری مورد نیاز جهت تعیین عملکرد مخزن در سرویسهای خاص بهره برداری تاثیر به سزائی داشته باشد .

فشار و دمای کاری : فشار و دمایی است که مخزن تحت آنها به عملکرد عادی خود می پردازد .

فشار طراحی ( UG-21 ) : فشاری است که جهت تعیین حداقل ضخامت مجاز برای اجزاء مختلف مخزن تحت فشار در نظر گرفته می شود و معمولا 10%  و یا 30 psi ( هر کدام که بزرگتر باشد) بیشتر از فشار عملیاتی آن می بشد . چنانچه مخزن دارای ارتفاع قابل توجهی باشد ( بیشتر از 10 متر ) لازم است که فشار استاتیکی ناشی از وزن سیال نیز به رقم مزبور اشافه گردد . در مورد مخازنی که بطور معمول در شرایط خلاء کار می کنند و یا اینکه امکان خلاء برای آنها محتمل است باید طراحی با در نظر گرفتن پدیده خلاء کامل صورت پذیرد .

درجه حرارت طراحی ( UG-20) : این پارامتر نقش مهمی در طراحی یک مخزن تحت فشار ایفا می کند چرا که مستقیما با مقدار تنش مجاز فلز بکار رفته در ساخت مخزن ارتباط دارد . به عنوان یک پیشنهاد می توان برای مخازنی که فعالیت آنها در محدوده  قرار دارد بر اساس RATING فلنجهای بکار رفته در آنها اقدام به تعیین درجه حرارت طراحی نمود چرا که حداکثر تنش مجاز برای فولادهای کربنی و کم آلیاژ در محدوده فوق عمدتا ثابت است . برای مخازن با فولاد کربنی که شرایط دمائی بهره برداری از آنها نزدیک به محیط اطراف می باشد تعیین حداقل درجه حرارت شکست ترد همواره وجود خواهد داشت . یادآوری میشود که آیین نامه در هیچ حالتی اجازه استفاده از درجه حرارت بالاتر از  1000 برای فولادهای کربنی و  1200 برای فولادهای کم آلیاژ را نمی دهد .

حداکثر فشار کاری مجاز[1]  (UG-98 ) : فشاری است که تحت آن فشار ، ضعیفترین عضو مجموعه به نقطه نهائی تنش تسلیم خود می رسد و این در حالی است که مخزن در شرایط ذیل قرار داشته باشد :

خوردگی ، دمای طراحی ، وضعیت جغرافیائی طبیعی ، تاثیر بار گذارهای گوناگون از قبیل باد ، فشار خارجی و فشار هیدرواستاتیک .

معمولا سازندگان مخازن تحت فشار مقدار M.A.W.P را با توجه به مقاومت عدسی و یا پوسته مخزن تخمین می زنند و اجزاء کوچک مثل فلنج یا دریچه ها را مبنای محاسبه قرار نمی دهند .

عبارت MAWP (new & cold) یکی از رایج ترین اصطلاحات در این زمینه بوده و اشاره به شرایط ذیل دارد :

  • New ( بدون خوردگی )
  • Cold ( فاقد شرایط دمای طراحی – در دمای اتاق )

بنابراین با توجه به تعریف اصلی MAWP خواهیم داشت :

MAWP   <   MAWP

فشار تست هیدرواستاتیک ( UG-99) : فشار این تست 5/1 برابر فشار طراحی و یا مساوی با MAWP در نظر گرفته میشود . البته با احراز شرایط Addenda 99  میتوان فشار مورد نظر را 3/1 برابر فشار طراحی نیز در نظر گرفت :

ماکزیمم تنش مجاز ( UG-23) : مقدار این کمیت بستگی به جنس ماده بکار رفته در ساخت مخزن داشته و مستقیما با خواص مکانیکی ماده تشکیل دهنده مخزن در ارتباط است . به عنوان مثال ، کمیت مورد نظر برای ماده SA 516 Gr. 70 بابر با  17500 psi ( psi 20000 با توجه به شرایط  Addenda 99 ) می باشد .

استحکام اتصالات ( UW-12) : مقداراین پارامتر (E) بستگی به نحوه اتصالات و درصد رادیوگرافی آنها دارد . در مورد مخزنی که قرار است بطور کامل[2] رادیوگرافی شود ( فشار طراحی بالاتر از 50 psi برای بویلر بخار، حاوی مواد سمی و یا ضخامت بیشتر از  برای C.S و  برای S.S) ، لازم است تا کلیه خطوط A و D بصورت صد در صد و خطوط C و B ( به شرط اینکه از لوله 10in و یا ضخامت  فراتر رفته باشد ) رادیوگرافی شوند . اما اگر قرار باشد که مخزنی بصورت موضعی[3] رادیوگرافی شود ، آنگاه محلهای اتصال خطوط B و C با خطوط دسته A ( شامل نازلهای با قطر بیش از از 10 in و ضخامت 1in  ) و محل تماس مقاطع بدون درز مخزن یا عدسی ها وقتیکه طراحی جوشهای A و  D بر مبنای استحکام 1.00 یا 0.9  صورت میپذیرد ، باید بطور موضعی رادیوگرافی شوند . ( شکل 1)

چنانچه مخزنی فاقد هرگونه رادیوگرافی طراحی شده باشد آنگاه باید حائز یکی از شرایط زیر باشد :

الف – تنها فشار خارجی وجود داشته باشد .

ب- طراحی اتصالات بدون در نظر گرفتن تست رادیوگرافی صورت پذیرفته باشد .

شکل ( 1) نام گذاری انواع جوشهای طولی و عرضی بر روی یک مخزن

در اینجا لازم است تا با انواع بارگذاریهای ممکن بر روی یک مخزن تحت فشار آشنا شده و از این راه اهداف طراحی و چگونگی آن جهت نیل به مقاصد اصلی را شناسائی کنیم . خلاصه ای از انواع بارگذاریهائی که میتواند بر مخزن تحت فشار اعمال شود در زیر مشاهده میگردد :

  • فشار داخلی ( یا خارجی )
  • وزن مخزن
  • بارهای استاتیکی ناشی از لوله های اتصال ، تجهیزات متصل به مخزن ، ادوات داخلی و ...
  • بارهای دینامیکی مربوط به تغییرات فشار یا دمای مخزن
  • نیروهای ناشی از اثرات باد و زمین لرزه
  • بارهای ضربه ای ناشی از پدیده ضربه قوچ[4]
  • تنش ناشی از گرادیان دمائی وابسته به زمان (اثر خزش[5])

معمولا در فرآیند طراحی یک مخزن تحت فشار ، چنانچه مخزن درشرایط خاصی قرار نداشته باشد میتوان برای راحتی کار ، اثرات بارهای استاتیکی ، دینامیکی، ضربه ای و همچنین پدیده خزش را نادیده گرفته و بدین ترتیب فقط تنش ناشی از فشار داخلی ( یا خارجی و نیز وزن مخزن به همراه اثرات باد و زمین لرزه در طراحی یک مخزن تحت فشار نقش اساسی ایفا می کنند .

[1] - maximum allowable working pressure (M.A.W.P)

[2] - Full Radiography

[3]- Spot Radiography

[4]- Water Hamer

[5] -Creep

با توجه به گوناگونی شرایط بارگذاری و همچنین فرآیندهای تولید ورق و دیگر اجزاء مورد نیاز یک مخزن تحت فشار ، تنشهای ایجاد شده را میتوان به 3 گروه عمده دسته بندی نمود :

  • تنش کششی
  • تنش فشاری
  • تنش پوسته ای اولیه ( تنش پسماند )

با این مقدمه ، هدف از طراحی یک مخزن تحت فشار را می توان بطور خیلی ساده غلبه بر انواع تنشهای ایجاد شده با توجه به شرایط عملکردی آن دانست به گونه ای که شکل فیزیکی مخزن از قابلیتهای عملکردی مطلوب برخوردار باشد .

انتخاب مواد :

یکی از مهمترین مسائل در طراحی مخازن تحت فشار انتخاب صحیح مواد اولیه بکار رفته در آنها می باشد چرا که این امر تاثیر به سزائی در تعیین ضخامتها، ابعاد و نهایتا شرایط عملکردی مخزن دارد . اطلاعات مهم برای انتخاب مناسب مواد شامل تعیین مشخصه ها و مقادیر ( و تغییرات تاثیر گذار) سیال در اجزاء مختلف مخزن می گردد .

بعلاوه ، PH سیال ، درجه هوازنی[1] و درجه حرارت ( با پیش بینی دامنه ) می باید لیست شود .

متداولترین مواد برای ساخت مخازن تحت فشار ، فولاد کربنی و کم آلیاژ می باشد . این فولادها در گسترده وسیعی از درجه حرارتهای مختلف ( )کاربرد داشته و آیین نامه کاربرد بیش از 34 گرید از فولادهای کربنی و 44 گرید از فولادهای آلیاژی را بعنوان ورقهای با کیفیت مناسب برای ساخت مخازن تحت فشار مورد تایید قرار داده است . انتخاب هر یک از این مواد عموماً بر اساس معیارهای زیر صورت می پذیرد .

  • در دسترس بودن ورق در ضخامتهای مورد نیاز
  • دارا بودن چقرمگی[2] مورد نیاز برای درجه حرارتهای پایین
  • دارا بودن استحکام لازم در درجه حرارتهای بالا
  • مقاومت در درجه حرارتهای بالا در برابر اکسیداسیون و یا خوردگی

معیارها اضافی دیگر که معمولا برای انتخاب مواد در صنعت نفت و پتروشیمی مورد توجه قرار میگیرد . مقاومت فلز در مقابل اثر تخریبی هیدروژن ( ایجاد شکنندگی هیدروژن[3] و تاولهای هیدروژنی) در درجه حرارتها و فشارهای بالا است . یادآور میشود یکی از ملاحظات عمده در انتخاب مواد ، خطر احتمالی شکست ترد[4] در بعضی فولادهای کربنی است که معمولا در محدوده  ( بسته به ضخامت و گرید فولاد) از اهمیت خاصی برخوردار می باشد ( به ASME , DIV.2 , AM-218 ) رجوع شود .

انتخاب دیگر در رابطه به مواد اولیه ساخت مخازن تحت فشار استفاده از فولادهای آلیاژی به دلیل کنترل خوردگی و یا جلوگیری از آلودگی سیال در اثر حل نمودن آهن می باشد . فولادهای ضد زنگ آستنیتی همپنین        می توانند برای شرایط کاری با درجه حرارتهای بالا تا  بکار گرفته شوند . مشخصه  های فرآیندی لازم برای انتخاب آلیاژهای مناسب در شرایط عملیاتی خاص مشابه با آنچه که برای مخازن ساخته شده از فولاد کربنی بیان شد می باشد . ازآنجائیکه قیمت تمام شده برای ورق آلیاژی تفاوت قابل ملاحظه ای با ورق کربنی دارد لذا معمولا در مورادی که نیاز به استفاده از فولادهای آلیاژی احساس می شود از ترکیب آنها به نام ورق روکش دار بهره می گیرند . این ورق با پایه اصلی فولاد کربنی و روکشی از جنس فولاد آلیاژی ( به ضخامت  تا  ) علاوه بر مقامت زیاد در برابر خوردگی از هزینه پایین تری نسبت به فولاد تمام آلیاژی برخوردار است . پیشنهاد زیر در رابطه با انتخاب بین آلیاژ و روکش آلیاژی از لحاظ قیمت تمام شده توصیه می گردد :

       : فولاد آلیاژی

   : فولاد آلیاژی یا روکش آلیاژی

      : روکش آلیاژی

در اینجا لازم است که اشاره ای به استاندارد NACE در رابطه با نحوه انتخاب مواد برای فولادهای کربنی و کم آلیاژ که بیشترین کاربرد را در صنعت نفت و گاز دارند بنماییم . این استاندارد صرفا با هدف تعیین شرایط لازم برای ایجاد مقاومت در مقابل پدیده S.S.C [5] تدوین گردیده و سایر اثرات تخربی ناشی از هیدروژن در سرویسهای اصطلاحا « ترش » میبایست جداگانه مورد توجه قرار گیرد . خلاصه نیازهای مورد نظر برای فولادهای مزبور بند 3.2 از استاندارد به شرح زیر است :

  • درصد نیکل در فولاد باید کمتر از %1 باشد .

[1] -Aeration

[2] - Toughness

[3] - Hydrogen induced cracking

[4] - Brittle Fracture

[5] - Sulfide stress cracking

نظرات 0 + ارسال نظر
امکان ثبت نظر جدید برای این مطلب وجود ندارد.